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THEORETICAL STUDY OF ORBITAL ELEMENT CONTROL WITH
POTENTTAL APPLTCATIONS TO MANNED SPACE MISSIONS
By James C. Howard

Ames Research Center
Moffett Field, Calif.

SUMMARY

To facilitate the modification of established lunar or planetary orbits, a
simple method has been developed for determining the impulsive velocity incre-
ments required to make prescribed changes in the orbital elements. The direct
determination of the velocity increments required to make prescribed changes in
the elements of planetary orbits proceeds from a knowledge of the time rates of
change of the orbital elements in the presence of perturbing forces. The sim-
plification inherent in the present method involves the replacement of a set of
differential equations relating the time rates of change of the orbital ele-
ments to the components of the perturbing force by a set of ordinary equations
relating the orbital element increments to the components of the impulse vector.
These equations are then solved by conventional methods to obtain the impulse
vector required to make prescribed changes in the orbital elements. This pro-
cedure necessitates the omission of second and higher order quantities. How-
ever, a 7090 digital computer program has been used to compute the errors
involved, and the results obtained indicate that the errors are well within
acceptable limits for the type of maneuvers contemplated. The equations have
been mechanized on the 7090 digital computer and used to compute the impulsive
velocity increments required to make independent changes in the orbital ele-
ments of a variety of earth and lunar orbits. 1In addition, the velocity incre-
ments required to produce orbital element changes of the type required to
execute lunar reconnaissance maneuvers have been computed and the results pre-
sented in graphical and tabular form. Specifically, the velocity increments
required to modify a lunar orbit with a semimajor axis of 1,400 statute miles
and an eccentricity of 0.2 have been computed. Such an orbit would be of value
if the object of a reconnaissance mission were to observe the lunar surface in
the vieinity of perilune. Because the use of high eccentricity orbits can
greatly reduce the velocity increments required to produce prescribed changes
in orbit plane orientation, a lunar orbit with a semimajor axis of 2,200 stat-
ute miles and an eccentricity of 0.5 has been used to further illustrate the
method. It is assumed that such orbits would be established by successive
applications of the method described in this report.

INTRODUCTION

Considerable research by Ames Research Center and other research groups
has been directed towards reducing the complexity of guidance and control



systems for manned space missions. References 1 and 2, for example, present
results which describe some relatively simple navigation and guidance systems
that have application to the midcourse return phase and the earth reentry phase
of a manned lunar mission. As part of a continuing effort in this direction,
an analytical study was undertaken to determine the possibility of devising
simple methods of computing the impulsive-thrust-vector requirements for pro-
ducing prescribed changes in the elements of an orbiting space vehicle. In
order to determine the impulses required to change the size and shape of estab-
lished orbits by the methods described in this report, it is necessary to know
the semimajor axis, the eccentricity, and the true anomaly in the established
orbit. In the case of earth orbits, the necessary orbital element data can be
obtained from ground tracking stations. However, in the case of extraterres-
trial missions, other back-up methods may be desirable. One method by which
the semimajor axis and the eccentricity can be obtained is from a series of
range determinations by the use of the parallax method. The determination of
range by this method requires a knowledge of the radius of the target body and
the angle subtended at the vehicle by this radius. Before true anomaly can be
determined it is necessary to establish the position and direction of the line
of apsides. However, discussion of the various methods of determining the
orbit from an orbiting space vehicle is considered outside the scope of the
present report, where 1t is assumed that the required orbital element data are
available. This study was motivated,.in part, by the potential application of
simplified computational procedures to space missions where fairly precise con-
trol of the orbital elements is desired, for example, lunar or planetary recon-
naissance missions, the shaping of parking orbits prior to injection into lunar
or interplanetary trajectories, and the removal of the secular changes produced
by the perturbations of the planet's gravitational field (ref. 3). The present
report has two main objJectives:

(1) To describe a simple computational procedure for determining the
impulsive velocity increments required to produce prescribed
changes in the orbital elements of a space vehicle

(2) To illustrate the potential application of this procedure to a
lunar reconnaissance mission where prescribed orbital element
changes may be made with relatively simple on-board computations.

SYMBOLS
a semimajor axis, statute miles
aj j matrix element in the ith row and the Jjth column
Cij matrix element in the ith row and the Jth column
e orbit eccentricity
Fh normal component of force
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components of an impulse
impulse required to make

impulse required to make
and the eccentricity

impulse required to make
normal component of the

normal impulse required
plane inclination

radial component of the
transverse component of

radial impulse required
of perifocus

radial impulse required
of perifocus by Ig

radial impulse required
of perifocus by Ige

radial impulse required
of perifocus by I

normal impulse required
of the ascending node

semilatus rectum, a(l -

vector
a prescribed change in the semimajor axis

prescribed changes in the semimajor axis

a prescribed change in the eccentricity
impulse vector

to make a prescribed change in the orbit

impulse vector
the impulse vector

to make prescribed changes in the argument

to null the changes induced in the argument

to null the changes induced in the argument

to null the changes induced in the argument

to make a prescribed change in the longitude
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mass of space vehicle
mass of the central body
perturbing force vector

position vector of vehicle in its orbit

B

unit vector in the positive direction of the position vector,
thrust vector

true anomaly

thrust direction measured from the local tangent to the flight path
direction of I, as measured from the local tangent to the flight path
direction of I ., as measured from the local tangent to the flight path
direction of I, as measured from the local tangent to the flight path
direction of Ia as measured from the local horizontal

direction of Iae as measured from the local horizontal

direction of Ie as measured from the local horizontal

increment of the associated variable

changes in the argument of perifocus associated with prescribed changes
in the semimajor axis

changes in the argument of perifocus associated with prescribed changes
in the semimajor axis and the eccentricity

changes in the argument of perifocus assocliated with prescribed changes
in the orbit eccentricity

2 X 2 determinant

argument of latitude, w + v

unit vector in the direction of increasing anomaly
dynamical constant of gravitation, G(M + m)
extraterrestrial gravitational potential function

gravitational potential function for an oblate planet
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argument of perifocus as measured from the ascending node line
argument of perifocus, w + Q

longitude of ascending node line

unit vector in the direction of the ascending node line
gradient of the gravitational potential function

degrees of arc

inverse of a matrix

transpose of a matrix

Subscripts

components of subscripted impulse

orbital element changes resulting in changes in the subscripted
variable

orbital element to be changed by the subscripted impulse

represents the effects of extraterrestrial gravitation of subscripted
potential function

row and column, respectively, to which subscripted matrix element
belongs

represents the effects of oblateness of subscripted potential
function

radial, transverse, and normal components, respectively, of the
subscripted variable

orbital element to be changed by the impulse subscripted by a
orbital element to be changed by the impulse subscripted by ae

orbital element to be changed by the impulse subscripted by e



ANAT,YSTS

The influence of thrust and gravitational forces on the elements that
determine the size, shape, and orientation of the orbit of a space vehicle may
be determined by the use of Lagrange's planetary equations. The five elements
that determine the size, shape, and orientation of a satellite orbit have to be
controlled by a force vector having three components. It follows that the
application of a force vector at an arbitrary point on an orbit will, in gen-
eral, produce changes in all the orbital elements. TFor example, the applica-
tion of a force vector which has a component normal to the orbit plane has the
effect of producing a gyroscopic precession of the orbit plane; and changes in
the orbit plane orientation give rise to changes in the argument of perifocus.
Moreover, a force which lies wholly in the orbit plane has no influence on the
orbit plane orientation, but does produce changes in the semimajor axis, the
orbit eccentricity, and the argument of perifocus. If the differential equa-
tions for the time rates of change of the orbital elements of a space vehicle
in a non-Keplerian force field are considered, it is possible to make a direct
determination of the impulses required to produce prescribed changes in the
elements if second-order terms are neglected. If the second-order quantities
are omitted the differential equations relating the time rates of change of the
orbital elements to the components of the thrust vector can be replaced by a
set of ordinary equations relating the orbital element increments to the com-
ponents of the impulse vector. In addition to the influence of thrust which
may be treated as a controlled perturbation, the equations for the time rates
of change of the orbital elements can be used to study the effect of the earth's
oblateness and extraterrestrial gravitational perturbations. If required, the
terms representing the effect of the earth's oblateness can be used to deter-
mine the changes produced in the elements of a parking orbit by the earth's
gravitational perturbations. These changes, which depend on the length of time
spent in orbit and on the orbit inclination, consist of periodic and secular
variations. In considering the effect of the gravitational forces produced by
an oblate planet having a potential function given by an infinite series of
zonal harmonics, it is found that the greatest influence is exerted by the sec-
ond harmonic of the planet's gravitational field. Although the influence of
higher gravitational harmonics may be relatively smaller than the second, the
cumulative effect of these harmonics is significant if the time spent in orbit
is long enough to permit the secular changes to accumulate.

Differential Equations

A set of differential equations which may be used to study the influence
of a perturbing force on the orbital elements of an orbiting space vehicle 1is
derived in reference 4. See also references 5 and 6. For an alternative vec-
torial derivation, see appendix B. These equations give the time rates of
change of the orbital elements as functions of the radial, transverse, and the
normal components of the perturbing force vector. Since the present study is
concerned only with those elements that determine the size, shape, and orienta-
tion of an orbit, the influence of perturbing forces on the time of perifocal




passage is omitted. The appropriate equations as derived in reference U are
reproduced in appendix A. To conform to the most widely accepted space-age
usage, changes of notation are introduced where necessary. The rates of change
of the orbital elements are all expressed as functions of the true anomaly with
the exception of the equation for the rate of change of the eccentricity. This
equation is seen to depend on the true anomaly and the eccentric anomaly. For
present applications, it is more convenient to have all the orbital element
rates expressed as functions of the true anomaly only. For this reason, the
eccentric anomaly is removed from the equation by expressing it as a function
of the true anomaly and the eccentricity. The differential equations for the
rates of change of the appropriate elements may be written in abbreviated form
as follows:

. aéi
where
i=1, 2 5
=121, 2,3

aiy = aij(ei)

The repeated subscript on the right-hand side of equation (1) denotes a summa-
tion. When equation (1) is written in full, the coefficients ajij become the
elements of a 5 X 3 matrix; €i are the five orbital elements that determine

the size, shape, and orientation of the orbit and they are defined as follows:

€1 a
€ e
€4 = o (2)
€, i
€g Q

The three mutually orthogonal components of the force vector are Fj. If sub-
scripts r, 9, and h denote the radial, transverse, and normal components,

respectively, the components Fj are defined by the following column vector:



Fo = Fg (3)

Equations For Impulsive Velocity Increments

Assuming that second-order quantities may be neglected, the relationship
between the orbital element increments and the components of impulse is given

by
1353 (%)

In terms of radial, transverse, and normal components, the impulse vector is
defined as follows:

Iy I,
I | = |1, (5)
I3 Ih

Tn matrix notation, equation (4) assumes the following form:

Ba 211 a1z O

oe 8s1 &op 0 L.

oIy = 837 @&ss &as33 Is (6)
31 0 O ayg Iy

30 0 O ass

It 1s clear from equation (6) that the problem of determining impulse consists
in finding three unknown impulse components when there are five equations,
Since it has five rows and three columns, the rank of the matrix which operates
on the column vector of impulse components in equation (6) cannot exceed three.
Hence, there cannot be more than three independent rows. It follows that any
combination of these eguations taken three at a time can be used to obtain an
impulse vector having the magnitude and direction required to produce pre-
scribed changes in the three corresponding elements. The influence of this

8




impulse on the remaining two orbital elements is obtained from the condition of
compatibility or consistency. The arrangement of the zero elements in the
matrix operator gives an indication of the way in which the orbital elements
are influenced by the components of impulse, TFor example, the fact that

a1z = @8z3 = O denotes that changes in the semimajor axis and the eccentricity
require in-plane forces. These two orbital elements are not influenced by
forces normal to the orbit plane. Furthermore, the orbit plane inclination and
the longitude of the ascending node line can only be changed by the application
of forces normal to the orbit plane, This is evident from the fact that

8u; = 840 = as51 = asz = 0

Since aga % O, it follows that the argument of perifocus undergoes changes
when either in-plane or out-of-plane forces are applied. If the argument of
Perifocus is defined as the sum of the nodal longitude and the argument of the
latitude of perifocus, then changes in orbit plane orientation give rise to
changes in the argument of perifocus. The matrix element asz; 1s a measure of
the change in the argument of perifocus associated with changes in the orbit
plane orientation., The matrix elements ajj are functions of the true anomaly
and the argument of the latitude; hence, some of these elements vanish at cer-
tain orbital locations. The orbital locations where a given matrix element
vanishes are points of ineffectiveness for the corresponding impulse component.
However, such locations can be used to advantage if it is required to manipu-
late one orbital element without changing the others. To show the dependence
of the matrix elements on the true anomaly and the argument of the latitude,
equation (6) is written in full.

2z2e sin v 2a2(1 + e cos v)

na(l - e2) pa(l - e?)

2 2
_ a(l - e®) sin v a(l - e®) cos v(2 + e cos v) + e 0
ﬁaj H H L +ecos v
de r
1 fa(l - e®) cos v L fa(l - e®) sin v(2 + e cos v) a(l - e®) sin(v + wytan[(1/2)]1
55 | = e [ e H (L + e cos v) [ (1 + e cos v) Ig

81 Iy
o o a(l - e3) cos(v + w)
80 B (L + e cos v)
L
o o a(l - e2) sin(v + w)
[ sin i(l + e cos v)

(7)



The matrix element a,5 which controls the orbit plane inclination is seen to
vanish when the argument of the latitude is 90° or 2700, whereas ass, which
controls the longitude of the ascending node line, vanishes at the ascending
and descending nodes. Hence, a normal impulse applied at a nodal position will
alter the orbit plane inclination without changing the longitude of the ascend-
ing node line; whereas, a normal impulse applied when the argument of the lati-
tude is 90° or 270° will alter the longitude of the ascending node line without
changing the orbit plane inclination. The components of the impulse vector
required to make prescribed changes in the semimajor axis, the eccentricity, and
the argument of perifocus can be determined from the following matrix equation:

ar; @aiz 0 Iy da

agy azz2 O Iy = Be (8)
ag31 &gz 8ass In 50

Therefore
-1

I. a1 &aiz o) da

Ip = amy1 Aas2 0 de (9)
In agl az2 as3 5%

The impulse vector obtained from equation (9) would produce the prescribed
changes in the orbital elements; however, such an impulse would produce
unwanted changes in the orbit plane orientation. Subsequent corrections to the
orbit plane orientation would then re-introduce errors in the argument of peri-
focus. In view of this it is considered more expedient to effect the pre-
scribed changes by the use of an impulse vector which lies wholly in the orbit
plane. The influence of such an impulse on the semimajor axis, the eccentric-
ity, and the argument of perifocus can be determined from the following matrix

equation:

a1y a1z da

. I,

a1 ag2 = Be (10)
Ig

asz1 @aaz2 dw

The rank of the matrix which operates on the column vector of impulse compo-
nents cannot exceed two, and therefore the number of linearly independent rows
cannot exceed two., Hence, any combination of these equations taken two at a
time can be used to obtain an impulse having the magnitude and direction

10



required to produce prescribed changes in the corresponding elements. The
impulse vector required to produce prescribed changes in the semimajor axis and
the eccentricity is obtained from equation (10) in the following form:

Ir arli a2z -1 da
= (11)
Ie aoa oo de
Compatibility or consistency of equation (10) requires that
ai1 212 | "t [Ba
8w = (az1 asz) (12)
as1 ag2 de
Therefore,
da
ai1 21z
Ly de
az1 agza2 = (13)
Ie a11 algs -1 da
831 8aaz (as1 as2)
agz1 ag2 e

Physically, this means that in producing the prescribed changes ©a and de by

the application of the impulse vector <Ir IG)T, the change given by equation
(12) has been induced in the argument of perifocus. From equation (7) it is
seen that these induced errors can be removed without changing the remaining
elements if a radial impulse is applied at perifocus or apofocus. In the event
that the impulse vector should have an out-of-plane component Ip, equation (8)
shows that the total change induced in the argument of perifocus is given by

S = 831 8ap + ass Ih (lh)

The solution of equation (11) is given by

11



II‘ 1 apo -al1z2 da
= X (15)

Ie ~a21 a1 de
A = (a1 apz - a1z az1) (16)

On substitution from equation (7), it is found that the impulse vector required
to produce prescribed changes ©a and de in the semimajor axis and the eccen-

tricity, respectively, is given by

n cos v(2 + e cos V) + e N (1 + e cos v)Z
a3(1l - e2) sin v a(l - e2)3 sin v

da

1
I, -5

1 m / n
= [—F— (1 +ecos v e [————= (1 + e cos V) de
To 2 Ja3(1 - e2) ( ) a(l - e2)°

(17)

Radial impulse required to change the argument of perifocus.- If the radial
impulse reqguired to produce an incremental change dw in the argument of peri-
focus be denoted by I, then from equation (7)

- - H 1
I, = e (1 - o7) o5 ¥ Bw (18)

If this impulse were applied at perifocus or apofocus, it would have no effect
on the remaining orbital elements. Hence, the radial impulse required to
change the argument of perifocus by dw without changing the remaining orbital
elements is given by

olw Bw (18a)
ow
where
OTw N K 1 (l8b)
dw a(l - e2) COS V
v=0,180°

12



Normal impulses required to change the orientation of the orbital plane. -
If the impulse required to produce an incremental change i in the orbit
plane inclination be denoted by Ii, then from equation (7)

B M (1L + e cos v) .
S N iee iam e b o

Likewise, if the impulse required to produce an incremental change 8Q in the
longitude of the ascending node be denoted by I, then from equation (7)

9 (L + e cos v)
IQ= R
a(l - e2) sin(v + w)

sin i| 30 (20)

From equations (19) and (20), it is seen that if a normal impulse were applied
when the argument of the latitude (v + w) was o° or 180 the orbit plane
inclination would be changed without altering the longltude of the ascending
node. Alternatively, if it were required to alter the longitude of the ascend-
ing node without changing the orbit plane 1ncllnatlon, the normal impulse would
be applied when the argument of the latitude was 90 or 270

Impulsive Velocity Increments Required to Produce Prescribed
Changes in the Orbital Elements of Woncircular Orbits

Simultaneous changes in the semimajor axis and the eccentricity.- To
facilitate the computation of the velocity 1ncrements required to produce pre-
scribed changes in the semimajor axis and the eccentr1c1ty of the orbit of a

space vehicle, equation (15) may be rearranged as follows:

I aa, ea oa
r 22 ~€aigz -
- I & (21)
1 A
Ie -88po71 ea11 §g
e
The elements of this matrix may be obtained from equation (17). By letting

dafa = m/100 and de/e = n/100, we can use equation (21) to obtain the impulse
vector required to produce an m percentage change in the semimajor axis, and
an n percentage change in the orbit eccentricity. The required impulse vec-
tor has the following components:

Ir Ci1 + Cio

= (22)
Ie Cgl + Coso

13




where the matrix elements Cij have the following values,

m M cos v(2 + e cos V) + e
€11 = - 1500 [ a(1 - e2) [ sin v ’ ] (23)
ne | M (L + e cos V)&
= 2
Ciz 100 a(l - e2)3 sin v :I (24)

m M
Ca1 = 355 20 - o2 (L + e cos v) (25)

ne2 M
Coo = - 100 ’a(l - e2)3 (l + e cos V) (26)

The magnitude of the impulse vector is given by

Toe = Jf(cll + C12)2 + (Cay + Cz2)®

To achieve the desired result, the impulse vector must be inclined at an angle

7gqe U0 the local horizontal, where

-1 /C33 + C
7ae = tan 1 < 11 12> (27)

Cz1 + Co2

The angle between the impulse vector and the local tangent to the flight path
at the point of application of the impulse is given by fge, where

_ -1 /C13 + C15 _ -1 e sin v
Bae tan <C2l + 022> tan <l + e Ccos V> <28)

1k



Changes in the argument of perifocus resulting from changes in the semi-
major axis and the orbit eccentricity.- If the change in the argument of peri-
focus induced by the application of the impulse Ige be denoted by Bwge, then

Ciz + Cap
dwae = (az1 asz) (29)
Cao1 + Can
where
1 - 2
aSl:-é 'a(—p’e—lCOSV (30)
and
a(l - e2 sin v 2 + e cos v
(L + e cos v)
A radial impulse is required to null By without changing the remaining

orbital elements, and it must be appliedagt perifocus or apofocus. If this
impulse be denoted by Iwae’ then from equation (18a)

OIw
Toge = 30 BLae (32)

Prgscrlbed changes in the semimajor axis.- To produce an m percentage
change in the semimajor axis of a noncircular orbit, without changing the orbit
eccentricity, requires the application of an impulse Ig, where

Tg = JC122 + Cp12 (33)

For the desired effect, the impulse vector must be applied at an angle 7, to
the local horizontal where
Vg = tan’t <C> (34)

15



The angle between the impulse vector and the local tangent to the flight path
at the point of application of the impulse is given by Ba’ where

C e sin v
= tan ( ll> (l+ e cos v> (35)

Changes in the argument of perifocus resulting from changes in the semi-
ma jor axis.- If the change in “the argument of perifocus induced by the impulse

be denoted by duwg, then
Cia
= (as1 asz) (36)
Cor

I

where as; and ags have the values given in equations (30) and (31). As indi-
cated previously, a radial impulse is required to null Bduwg without changing
the remaining orbital elements and it must be applied at perifocus or apofocus.
If the required impulse be denoted by I, , then from equation (18a),

oI
Ly = S Bua (37)

Prescribed changes in the orbit eccentricity.- The impulse required to

produce an n percentage change in the eccentricity, without changing the
semimajor axis, is given by

= \/0122 + Cp2® (38)

The impulse vector must be applied at an angle 7., to the local horizontal
where

- o (22) -

16



The corresponding angle between the impulse vector and the local tangent to the
flight path is given by

ao =1 (Cyo -1 e sin v
Be = ‘ten C22> - tan <l + e cos V) (L'-O)

From equations (24), (26), and (40) it is seen that

Cis e sin v _
Casn <; + e cos %) = -1 (41)

hence, the angle Pe 1s always 1900. It follows that to change the orbit
eccentricity without changing the semimajor axis, the impulse must be directed
along the normal to the flight path.

Changes in the argument of perifocus resulting from changes in the orbit
eccentricity.- The change in the argument of perifocus produced by the impulse
I is given by

e

Ciz
dwe = (as1 asz) (h2)
Caa

The radial impulse required to null &we 1is given by

1, = 2 50, (43)

Application to Lunar Reconnaissance Maneuvers

Since only a limited area of the lunar surface can be observed from one
orbit, the orbit plane orientation must be changed to permit observation of
other areas. Orbital plane rotation about any position vector can be accom-
plished by the application of an impulse normal to the orbital plane at any
desired orbital location, as indicated in previous sections.

The orientation of an orbital plane is by convention defined in terms of
the orbit plane inclination and the longitude of the ascending node line. This
way of resolving the orbit plane orientation into components is convenient for
establishing the orientation of the plane in space. However, for lunar or
planetary reconnaissance work, there is no need to determine the orbital plane
orientation in terms of the angular displacement of the node line from some

17




fixed line, and the angular displacement of the orbital plane from some fixed
plane, measured as a rotation about the node line. TFor the applications con-
templated here, it is more convenient to consider the orbital plane rotation
vector rather than its components. It is assumed that from some initial orbit
which is unsatisfactory from the point of view of observation and photographic
survey, an orbit with a satisfactory size and shape has been established by the
methods previously indicated. When the surface of the target body has been
observed and photographed from this orbit, the orbital plane can then be
rotated about the position vector from the center of the target body to the
vehicle by the application of an impulse normal to the orbital plane. This is
evident from the following considerations: the precessional torque required %o
change the direction of the angular momentum vector h without changing its
magnitude is given by

M=®Gxh (k)

where M 1is the precessional torque vector and W 1is the precessional rate
vector. This symbol is not to be confused with the symbol for the argument of

perifocus. Solving this equation for W gives

7= T (45)
however,
M=7xT (46)

where T is the position vector and T is the thrust vector. On substituting
from equation (46) in equation (L45), the angular velocity w 1is obtained in
the following form:

b = m F
Gzhx(rxT)_hr? (47)

h2 h

where Fy, 1is the component of thrust normal to the orbit plane. Equation (47)
shows that the orbital plane rotates about the position vector in the presence
of a force which has a component in the direction of the normal to the orbital
plane. It is seen that for a given force Fy, the angular velocity «w is pro-
porticnal to the radial distance rj; and, hence, the impulse required to pro-
duce a prescribed change in orientation decreases with radial distance.

The normal impulse Iy required to produce a prescribed change do in
the orbit plane orientation can be obtained from equation (k7) as follows:

18




therefore

[l
I

do r
5o 3T 3t = 5 <?h6?> =5 Ih

therefore

(o4
[¢)
|
=

;ZI—T_EET (L + e cos v)| 50 (48)

RESULTS AND DISCUSSION

The results presented here have been divided into two parts: one part
deals with the velocity increments required to make prescribed changes in the
elements of earth orbits, and the other deals with the application of the
method to lunar reconnaissance maneuvers.

Earth Orbital Element Changes

The results plotted in figures 1 and 2 show the velocity increments
required to produce a range of prescribed changes in the semimajor axis of an
earth orbit, subject to the constraint that the eccentricity retains its ini-
tial value. The results plotted in figures 1 and 2 are for an orbit with a
semimajor axis of 8,120 statute miles. However, the curves in figure 1 refer
to an orbit with an eccentricity of 0.2; whereas those of figure 2 refer to an
orbit with an eccentricity of 0.5. Each figure shows the velocity increments
required to produce five percentage increases in the semimajor axis. The per-
centage increases selected for computation were: 0.1, 0.3, 0.5, 0.7, and 0.9.
For convenience, however, the corresponding increase in miles is noted on each
curve. The curves superimposed on these plots show the directions which the
velocity increments must have in order to produce the desired change. It is
interesting to note that there are two points on each orbit where a tangential
impulse can be used to produce a prescribed change in the semimajor axis with-
out changing the eccentricity of the orbit. It is easy to show that this con-
dition arises when the length of the position vector to the vehicle equals the
length of the semimajor axis. The condition r = a is satisfied when the true
anomaly satisfies the following equation:

v = cos t(-e)
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Changes in the argument of perigee resulting from prescrlbed changes in
the semimajor axis.- The results plotted in figures 3 and 4 show the changes in
the argument of verigee resulting from the range of percentage increases in the
semimajor axis of the earth orbit discussed in the preceding section. Each
curve of figure 3 shows the changes in the argument of perigee resulting from
the corresponding curve of velocity increments plotted in figure 1. Likewise,
each curve of figure 4 shows the changes in the argument of perigee resulting
from the corresponding curve of velocity increments plotted in figure 2.

Eccentricity changes.- The impulsive velocity increments required to pro-
duce prescribed changes in the orbit eccentricity subject to the constraint
that the semimajor axis retains its initial value are plotted in figures 5 and
6. The results shown are for an earth orbit with a semimajor axis of 8,120
miles. However, the curves shown in figure 5 refer to an orbit with an eccen-
tricity of 0.2; whereas those of figure 6 refer to an orbit with an eccentric-
ity of 0.5. Bach figure shows the velocity increments required to produce five
percentage increases in the orbit eccentricity. The percentage increases
selected for computation were: 0.1, 0.3, 0.5, 0.7, and 0.9. The curves super-
imposed on these plots show the directions the velocity increments must have in
order to produce the required change in the eccentricity. To change the eccen-
tricity without changing the semimajor axis, it has been shown in equation (k1)
that it is necessary to apply the impulse vector in a direction perpendicular
to the local flight path, and in the plane of the orbit. See the curve of B8

in figures 5 and 6

Changes in the argument of perigee resulting from prescribed changes in
the orbit eccentrlclty - The curves plotted in figures 7 and 8 “show the incre-
mental changes induced in the argument of perigee by the velocity increments
used to produce the percentage changes in eccentricity discussed in the pre-
vious section. Each curve of figure 7 shows the changes in the argument of
perigee induced by the corresponding curve of velocity increments plotted in
figure 5. Likewise, each curve of figure 8 shows the changes in the argument
of perigee induced by the velocity increments plotted in figure 6. It is of
interest to note that there are two points on an orbit where a normal impulse
can be applied to produce a prescribed change in the eccentricity without induc-
ing a change in the argument of perigee. It is easy to show that these two
points correspond to values of the true anomaly given by the following equation:

2
v = 180° £ tan™t <?;J;fi{>
2e

Orbital plane inclination.- To produce a prescribed change in the orbital
plane inclination, a ve1001ty increment must be applied in the direction of the
normel to the orbit plane. Equation (19) has been used to compute the magni-
tude of the impulsive velocity increments required to produce a 1° change in
the orbit plane inclination of an earth orbit. The results are plotted in fig-
ure 9. The initial values of the orbital elements are as indicated on the

figure.
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Nodal longitude.- As in the case of orbit plane inclination, changes in
the nodal longitude require that the corrective impulses be applied in the
direction of the normal to the orbital plane. Equation (20) has been used to
compute the impulsive velocity increments required to produce a 1° change in
the longitude of the ascending node line of an earth orbit with an inclination
of 450. The results are plotted in figure 10. The initial wvalues of the
orbital elements are as indicated on the figure. It is to be noted that
changes in the orbit plane inclination are coupled to changes in the longitude
of the ascending node line, and vice versa, unless the impulses are applied
when the argument of the latitude (v + w) is 0°, 90°, 180°, or 270°.

Application to Lunar Reconnaissance

Advantage of using high eccentricity orbits for certain types of recon-
naissance maneuvers.- It is evident from equation (48) that fuel requirements
could be reduced for certain types of reconnaissance missions if the lunar sur-
face area of interest were in the vicinity of perilune and subsequently the
orbit planeowere rotated about the line of apsides. The impulse required to
produce a 1~ change in orbit plane orientation is seen to be a minimum if the
orbit plane is made to rotate about the line of apsides by the application of a
normal. impulse at apolune. The impulse required is a maximum if the plane
change maneuver is executed at perilune. The ratio of the impulse required at
apolune to that required at perilune is given by (l - e)/(l + e). Equation
(48) has been used to compute the velocity increments required to rotate vari-
ous orbit planes through a 1° angle about the line of apsides. The results in
table T give a good indication of the advantage of executing plane change
maneuvers when the vehicle is at apolune of high eccentricity orbits.

Prescribed changes in the semimajor axis of a lunar orbit.- Equations (33)
through (35) have been used to compute the impulse vector required to make pre-
scribed changes in the semimajor axis of a lunar orbit, subject to the con-
gstraint that Ae = 0. The results for a lunar orbit with a semimajor axis of
1,600 miles are plotted in figures 11 and 12. The orbit eccentricities have
the values indicated on the figures. The incremental changes in the argument
of perilune resulting from changes in the semimajor axis are plotted in figures
13 and 1k.

Changes in perilune height.- A lunar orbit with a semimajor axis of 1,400
miles and an eccentricity of 0.2 has a perilune height of 40 miles. The veloc-
ity increments required to reduce the perilune height by 5.6 miles were com-
puted and plotted as a function of the true anomaly in figure 15. Curve 1
shows the velocity increments required to produce the required change in height
by reducing the semimajor axis without changing the orbit eccentricity. Curve
1 of figure 16 shows the changes in the argument of perilune induced by changes
in the semimajor axis. When the perilune height is changed without altering
the orbital period (i.e., without changing the semimajor axis), curve 2 of fig-
ure 15 results. The corresponding plot of induced changes in the argument of
perilune is given by curve 2 of figure 16. Because the use of high eccentric-
ity orbits can greatly reduce the velocity increments required to produce
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prescribed changes in orbit plane orientation, the velocity increments required
to modify a lunar orbit with a semimajor axis of 2,200 miles and an eccentric-
ity of 0.5 have been computed. It is assumed that this orbit which has a peri-
lune height of 20 miles would be established by successive applications of the
method described in this report. The results plotted in figure 17 show the
velocity increments required to reduce the height at perilune by 5.5 miles.
Curve 1 of figure 17 shows the velocity increments required to reduce perilune
height by reducing the semimajor axis without changing the orbit eccentricity.
Curve 2 of figure 17 shows the velocity increments required to modify the
height at perilune by the prescribed amount, by changing the orbit eccentricity
without altering the semimajor axis. When equal percentage changes are made in
the semimajor axis and the orbit eccentricity, curve 3 of figure 17 results.
The corresponding curves of figure 18 show the changes induced in the argument
of perilune by the velocity increments plotted in figure 17. The curves of
figure 19 give the directions which the velocity increments plotted in figure
17 must have in order to produce the prescribed change in perilune height.

CONCLUDING REMARKS

Replacing a set of differential equations relating the time rates of
change of the orbital elements to the components of a perturbing force with a
set of ordinary equations relating the orbital element increments to the com-
ponents of an impulse vector makes it possible to compute the impulsive veloc-
ity increments required for prescribed changes in the elements of lunar or
planetary orbits. The necessity of omitting second and higher order quantities,
which the method entails, gives rise to errors in the computed results. How-
ever, numerical analysis indicates that these errors are well within acceptable
limits for the types of maneuvers contemplated. As an example, a lunar orbit
with a semimajor axis of 1,600 miles and an eccentricity of 0.2 may be consid-
ered. In making a 5-mile change in the semimajor axis, it was found that the
impulse computed on the basis of the simplifying assumptions made gave rise to
a change in the semimajor axis which was approximately 100 feet in error. As a
second example, an earth orbit with a semimajor axis of 8,000 miles and an
eccentricity of 0.1 may be cited. In making an 8-mile change in the semimajor
axis, it was found that the computed impulse gave rise of an incremental change
in the semimajor axis which was approximately 50 feet in error.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., Jan. 9, 1964
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APPENDIX A

DIFFERENTTIAL EQUATIONS FOR THE TIME RATES OF CHANGE OF THE

ORBITAL ELEMENTS IN THE PRESENCE OF PERTURBING FORCES

It igs shown in reference 4 that the variation of the orbital elements can
be expressed in terms of the components of the disturbing force. The formula-
tion is such that the rates of change of the orbital elements are expressed as
functions of the radial, transverse, and normal components of the perturbing
force vector. In terms of the notation of reference 4, the equations for the
rates of change of the orbital elements assume the following form:

3

%%=2/a?[stancpsinW+Tsecq>(l+eCOSW)] (A1)
de _ [2 os ® [S sin w + T(cos w + cos E)] (a2)
dt )
a 1 {-a8 cos2pcos w +rT sin w(2+e cos w) +rW singtan[(1/2)i]sin u}
at JE . sin ¢ cos @

(A3)
di _ rW cos u (Ak)

dt fua cos @

aa rW sin u

at - Jea cos @ sin i (45)
where
W true anomaly
sin @ eccentricity
E eccentric anomaly
u argument of the latitude (i.e., the sum of the argument of perifocus,

measured from the ascending node line and the true anomaly)

S,T,W radial, transverse, and normal components, respectively, of the per-
turbing force vector
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In the notation of the present report (see fig. 20)

S=7° (Woop + Voot + T) (46)
T=8 . (Voo + Vor + T) (A7)
W=h . (Vog, + Vet + T) (28)
U=w+v (A9)
W=V (a10)
sin @ = e (A11)

The rates of change of the orbital elements are all expressed as functions of
the true anomaly, with the exception of the equation for the rate of change of
eccentricity. This equation is seen to depend on the true anomaly and the
eccentric anomaly. For present applications it is more convenient to have all
the orbital element rates expressed as functions of the true anomaly only. For
this reason the eccentric anomaly is removed from the equation by expressing it
as a function of the true anomaly and the eccentricity as follows:

a1l - e®)
T 14+ e cos v

r
- = - e c B
., L 0s
therefore
cos E = cos v + e
1 +e cos v
therefore

cos v(2 + e cos v) + e (a12)

Il

cos v + cos B
1 +e cos v
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Substituting from equations (A6) through (Al2) in equations (Al) through (A5)
yields the following form of the equations for the rates of change of the
orbital elements:

2
da _ 28" _ [(e sin v)T + (1L + e cos v)B] -« (Yoop + VOer + T) (A13)

LN (TPY GRS

de  [a(l - &%) . A cos v(2 + e cos v) + e | A =
at = . m (sin v)T + T+ e cos v 0t (VPop + VPet + T)

(ALL)
ap _ [a(1 - %) 1 A 1 sin v(2 + e cos v) | A
a M ((—ecosv>r+ [é— 1+ecosv 0
i + w)t 2)il|l & w
+ {s1n(vl +wg igi(v/ )l] h) . (Vwob + Vet + T) (AlS)
P.
ai /a(l-ez cos(v + w) AN —
at -~ H : 1 +(e cos)v B« (Fpop + Vet + T) (A16)
—
an a(l - e®) sin(v + w) A —
at - H sin i(1 + e cos v) Bt (VPob * Veer + 1) (817)
where
AL, LA, _ 1 4
Ve =St T du o+ r sin u d1i h (A18)
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APPENDIX B

VECTOR DERIVATION OF THE EQUATIONS FOR r

ORBITAL ELEMENT PERTURBATIONS

The equation of motion of a particle of unit mass moving in an inverse-
square-law central force field is

acr LA
—--57 (B1)

Vector multiplication of each side of equation (Bl) by the angular momentum
vector h gilves

= —
d—lz"xh=--“§(’1>><h) (B2)
at r

- _ _ LA

h=rxv=(r3)h (B3)

On substitution from equation (B3) in equation (B2) it is seen that

SLxh=(u)o
at®
therefore
d vXh A 4A
™, C e =gt (Bl)

The integral of equation (BL) is given by

<

Xh A
r

T (BS)

o]

+

where e 1is a constant vector of integration. The vector & may be expressed
in terms of its scalar magnitude and a vector of unit length as follows:

T =68 (B6)

where 2 1is a unit vector (fig. 20). Substituting equation (B6) in equation
(B5) gives
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v i no_ 2+ A (B7)

Equation (B7) may be solved to obtain the position vector T. Sgglar multi-

plication of each side by T gives the following equation for r:
v (WXB) o7 - D)
[
therefore
m).—hzr(l+ecosv)
K
therefore
2

r:
1l + e cos v

Vector multiplication of each side of equation (B7) by h gives

h ¥ x h) = ph X (eg + ?)

therefore
a (B9)

With the notation of figure 20, the unit vector & may be expressed in the

following form:

2 = (cos v)? - (sin v)8 (BLO)

If the assumption of an inverse-square-law central force field is not satis-
In the presence of

fied, the equation of motion must be modified accordingly.
a perturbing force P, the equation of motion becomes

&7 5 _ uf
wT-F -3 (B11)

Furthermore, in the presence of the perturbing force vector ?, the assumption
of constancy no longer applies to the vector €. Hence,
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dﬁ——{@xﬁ+7x(?x§)-—%—[(FXV)XF]} (B12)
r

B ar T at
therefore
de dv | pur - _ =
—_— = | = 4 =
s <€t r§> Xh+7v¥x (Fx?P)
therefore

u%%:?x'ﬁ+?x(?x§) (B13)

The first term on the right side of equation (Bl3) may be written in the fol-
lowing alternative form:

n 8 .7 (BLk)

as]
X
fl

likewise,

il
X
ol
i
o]

B8 - B0 (B15)

When substitutions are made from equations (B9) and (Bl5), the second term on
the right side of equation (Bl3) is given by

<l

- — A AN —
x(rxP)=%{?"9\+e!:’a\@+(e-g)hh]}-P (B16)
Substitution for Q from equation (BlO), equation (Bl6) becomes

- — A . AN AA —
vx (rx?P) = [(L + e cos V)?Q - e sin v(66 + hh)] - P (B17)

|
=15

From equations (BlLk) and (Bl7) it follows that

- - - = A
Pxh+vX(rxP)s= { [%? (L + e cos v) + h} TO

AN —
_<E;—esinv8’e‘+h8?>-9£e—sinvhh}-P

(B18)
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The components of the term on the left side of equation (Bl3) may be obtained
as follows:

u%%:p g—i+m><€> (BL9)

where w 1is the angular velocity of the vector e., As the vector & moves in
the orbit plane, it rotates about the unit vector h which is normal to the
plane. In addition, the orbit plane rotates about the instantaneous position
vector. Hence, the vector w is given by

l:(l)i’\l+ﬁx (T x f)}

w
=

therefore

=l

N ﬂ (B20)

By substitution from equation (B20) in equation (BL9) it is found that
de . . . A . . N
K at - Mle cos v+ wesinv)r +plwe cos v -e sinv)o

AN —
- Eﬁi sin v(hh) - P} (Bo1)

Equating coefficients of like vectors in equations (B18) and (B2l) yields the
following results:

1L <é cos v + We sin %)
0 <ée cos v - & sin v>

On solving for & and & it is found that
N —
{% [cos v(2 + e cos v) + eJ 9 + <§ sin j)‘?}-- P (B22)

roo. I h N = i
[Eﬁ sin v(2 + e cos v)8O - <?€ cos Y) r} . P (B2y

2h(8 . P)

and

- <¥%§ sin v@ + hg) - P

e
i

Il
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It is seen that for circular orbits there is a singularity in the equation for
0 because of the presence of e 1in the denominator. The physical signifi-
cance of this is that for low eccentricity orbits the argument of perifocus is
not well defined and does not exist for circular orbits.

Orbital Plane Orientation

Since the orientation of a plane in space is uniquely determined by the
normal to its surface, the orientation of an orbit plane is determined by the
angular momentum vector. This fact may be used to advantage in finding the
time rates of change of the elements defining the orientation of an orbit plane
in space. The longitude of the ascending node llnqAand the inclination of the
orbit plane are related to the unit vectors k and h as follows:

A A N
kX h = (sin i)Q

therefore
ll\ixd—,}\l-— cosi£6+ sin 1 &2 (?{Xa) (B2L)
at - at T at
and
A dn r N A A
kX == - ¢ (kx®8) (b - P) (B25)

N
The unit vector 6 has the following components along and perpendicular to the
ascending node line

2 - -(sin 9)/{} + cos 9(11\1 X 3) (B26)

On substitution from equation (B26) in equation (B25), the following result is
obtained:
A
n A A A —
k X %% = % [sin o(k x Q) + cos 6 cos 19] (% . P) (B27)

From equations (B2Lk) and (B27) it follows that

di rcos o D =
= = = (h - P) (B28)

df¢ _ r sin 8 (

at h sin 1 (B29)
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Orbital Plane Orientation and the Argument of Perifocus

Since the orbital plane rotates about the instantaneous position vector

T,
the argument of perifocus as measured from the line of nodes will vary in the
manner indicated in sketch (a).

;’ﬁ
///////Orbi!
//Ie/lone
P i
A
4
’I
1
i % /’
Il
/
/
/
//
/
/
N8 J /// — Y 7
) \\ /I i+3i
\\\ i,l
\,C
B
Xi
4
Sketch (a)
When the sine rule is applied to the spherical triangle ABC, it is seen that
sin 6 _ sin(B + 86)
sin(i + &1i) sin 4
therefore
50 = -(tan 6 cot i)di
Since the position vector is assumed constant during the orbital plane rota-
tion, it follows that &6 = dw. Hence,
dw _ .y di
e -(tan 6 cot i) e (B30)
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Substituting for di/dt from equation (B28), the rate of change of the argu-
ment of perifocus produced by the rotation of the orbit plane is given by

dw r cot i sing N =
at - - h (b« P) (B31)

If the argument of perifocus is measured from the inertially fixed x axis,
then the rate of change associated with orientation changes is given by the

following sum:
af dw
=t (B32)

Substituting for dQ/dt from equation (B29) in equation (B32), the required
rate is obtained in the following form:

an dw r sin @ tanKlﬂE)i](% . f) (3323)

T T h

If equations (B32a) and (B23) are combined, the total rate of change of the
argument of perifocus is given by

~ h N + 3 N —
dw _ {_ — cos v>? + = gin v(2 + e cos V) + r sin (v + lslu)tan[(l/E);] h} . P

dat pe eh
(B33)
The semimajor axis is defined as follows:
Let
a = LE;;:ElZé (B3k)
1 -e e

It is known from orbit theory that for closed orbits, the quantity 2a is the
distance from perifocus to apofocus. The quantity a is the semimajor axis.
In an ideal inverse-square-law central force field it remains constant. How-
ever, the force field assumed in the present study is noncentral so that the
quantity a must be treated as a variable. From equation (B9), the square of

velocity is given by
> 2 1 B
Ve o= <§ 3 (B35)

therefore
2

(B36)

o

2 _ ¥
roou
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Differentiating equation (B36) with respect to time gives the following rate
of change of a:

1l da_ 2dr 2vdv
T a2dat  ~ op2dt ou dt
therefore
1 da 2 /A ar 2 /— 4dv
— — IS e .-—+_ * ——
a2 at 12 <% d%) m <% d€>
therefore
1 da 2 /n  dr 2 = ur
_ = = = —) + = P -
a2 dt 1 <% d%) T < r%)
therefore
da 2a® - =
= = = - P B
o S (¥ ) (B37)

Substituting for ¥ from equation (B9) yields

= A
%% = g%— [(e sin WP+ (L + e cos v)B] -

ol

(B38)

Perturbing Forces

Perturbing forces are assumed to be generated by the earth's gravity field
and extraterrestrial gravity fields. Both of these forces are assumed to be
derivable from known gravitational potential functions. It is further assumed
that thrust forces are available to introduce controlled perturbations. In
terms of the gravity gradients and the thrust forces, the perturbing force
vector P may be expressed as follows:

P= v(pob + VCPet + T (B39)

For convenience of reference the results are summarized below:

2 —
%% = 2%_ [(e sin v)2 + (1L + e cos v)B] - (Voop + Vet + T) (B4O)

=

g%-= {K%-sin %) 24+ L [cos v(2 + e cos v) + eJ s} « (Voop + Vet + T)
(B41)
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N

de h N r :
3T ° (— <He cos V> r + oy !:Sll’l v(2 + e cos V)] 2]

. {r sin(v + wgltanl_(lla)i]}%) * (Wop + VPat + T) (Bk2)
g% _ [r coslgv + W) ,f\l:i © (VPop + VPt + T) (B43)

a2 | r sin(v + w) A —
av [ h sin i h:j © (Wop + Ve + T) (BLL)
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TABLE I.- VELOCITY INCREMENTS REQUIRED TO ROTATE THE LUNAR-ORBIT PLANE THROUGH

36

1° ABOUT THE LINE OF APSIDES

B Impulse,
a, ft/sec

miles ©

Perifocus Apofocus
1600 0.1 87.4 71.5
1600 .2 96.8 6.6
1600 .3 107.7 58.0
2200 .1 4.5 61.0
2200 .3 91.9 ho.5
2200 .5 116.8 39.0
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